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Abstract: Because the reservoir simulation models arising from real field may consist of hundreds of thousands 

or millions of grid blocks, traditional reservoir simulators can be quite time-consuming. This also led to 

computational cost of production optimization and history matching process of closed-loop reservoir 

management be greatly increased. Improving reservoir simulation speed is the urgent problem to be solved. In 

this paper, the proper orthogonal decomposition (POD) model order reduction method is applied in reservoir 

numerical simulation. First of all, in the training process, full order reservoir simulator is run to get snapshots 

and the POD base matrix is constructed. Then the base matrix is reused to predict under different production 

schedule. Numerical experiment shows that this method can greatly reduce the dimensions of reservoir model 

and improve the operation speed of simulator by nearly three times under the conditions with sufficient 

precision to ensure, and verify the validity of proposed method. 

Keywords: reservoir numerical simulation; fully implicit; model order reduction; proper orthogonal 

decomposition (POD); control system 

 

Reservoir numerical simulation is one of the important means of reservoir development. It can make 

engineers better understand the reservoir physical properties and fluid flow law, in order to make the correct 

evaluation and determine the reasonable development plan and measures to improve the recovery rate. In the 

traditional reservoir simulator, the partial differential equations, which are composed of the equations of motion, 

the state equation and the continuity equation, are discretized and transformed into a set of nonlinear algebraic 

equations, and then solved by iterative method. However, for the actual oil reservoir model may include 

hundreds of thousands or millions of grid, number of equations required is very large, the traditional reservoir 

simulator is very time-consuming. In particular, when the reservoir simulator is used in the closed-loop reservoir 

management [1-5], production optimization and the history matching process require repeated operation 

simulator. This leads to a significant increase in computational cost, which is also an important bottleneck that 

can not be applied in a large scale. Therefore, in order to ensure the accuracy of the numerical solution, how to 

accelerate the simulation speed of the reservoir is an urgent problem to be solved. 

The model reduction technique was first used in the field of automatic control and circuit system. Its task is 

to reduce the dimension of the state space vector and keep the input and output characteristics of the system at 

the same time. The proper orthogonal decomposition method (POD) is the most widely used in nonlinear system 

model reduction method. The computational cost of this method is low, and it has some stability, maintains some 

basic properties of the original system. The POD method has been successfully applied to computational fluid 

mechanics [6], structural mechanics [7], and meteorology [8], digital signal processing [9], and other fields. In 

this paper, the POD model reduction method is applied to reservoir simulator, which can greatly reduce the 

dimension of reservoir model, so as to reduce the calculation time and improve the operation speed. 

 

I. Control Equation of Reservoir Model 
In this paper, the mathematical model of reservoir model is transformed into the state space equation by 

means of space discrete in order to explain the reduction process of POD method. Two dimensional oil-water 

two phase reservoir model is used. It is assumed that oil and water do not exchange material, the process is 

isothermal, the fluid is compressible, and the mass conservation equation and Darcy's law can be used to obtain 

[10]： 
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Where K is permeability tensor;  is fluid viscosity; rk is relative permeability; p is pressure; g is gravity 

acceleration; d is depth; fluid density;  is porosity; S is fluid saturation; t is time; 
'''q is a source term 

expressed as flow rate per unit volume; superscript  woi ,  is respectively oil phase and water phase. In the 
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equation (1), there are four unknown quantities, wp and oS are eliminated by using the auxiliary equation (2) 

and (3), so that only the state variables wo Sp ,  are  

included in the equation,                                

                                        1 wo SS                                    （2） 

                                        )( wcwo Sppp                               （3） 

Where )( wc Sp is oil-water two-phase capillary pressure. 

We consider the relatively simple cases and ignore gravity and capillary force. Format to discrete in space 

by using five point block centered finite difference, we may have the nonlinear first-order differential equation 

(4), see the specific derivation of literature [11]: 
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Where: vector p and s is grid center oil pressure op and water saturation
wS respectively; p and s  is the 

time t derivative of vector p and s respectively; V is the cumulative matrix; T is transmission matrix; F is 

divided flow matrix; Vector ,well tq is the total flow of oil-water well. 

Define the state vector x , input vector u and output vector y  
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Where vector ,well tq


and
wellp


represent the well of the constant flow and the bottom hole pressure respectively; 

The vector wellp indicates the output bottom hole flow pressure of the constant flow well; 

Vector ,owellq and ,well wq indicate the output oil and water flow of the constant bottom hole pressure respectively. 

The equation (4) can be written as the form of state space equation [11]: 

                                        c cx f(x,u) A (x)x +B (x)u                      （8） 

                                      y = h(x,u) = C(x)x + D(x)u                       （9） 

In the control system, 
cA is called the system matrix, 

cB is called the input matrix, C is called the output 

matrix, D is called the direct transfer matrix. Because the elements of the matrix V ，T ，F ，J  are function 

of the state variables, the system is a nonlinear system. 

The control equation (8) is solved by the full implicit method, / t x approximating derivation / dd tx , 

we have 

                                             ( (t), (t))
t
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

x
f u x                         （10） 

Sets kx  representing the value of the state variable at kt , 1kx representing the value of the state variable 

at 1kt  , we have 

                                         1 ( , )k k c k kt x x f u x                       （11） 

Ordering 1 ,k k c k t  f x f , there are 

                                             1( , , )k k k k kx f u x x                       （12） 

Since both ends of the equation (12) contains kx , it is a nonlinear equation set, which is usually solved by 

Newton iteration method. However, when the dimension of the variables is very high, the solving process is 

very time-consuming, and the computational cost is large. For this purpose, the POD model reduction method is 

applied to the reservoir simulation, the dimension of kx is reduced, and the operation speed is improved. 
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II. POD Model Reduction Methods 
POD method is also called empirical orthogonal function method and Karhunen–Loève decomposition 

method. In this method, a set of optimal orthogonal basis is constructed by using the data obtained from the 

given theory or experiment to reduce the order. The basic principle of the method and its application in reservoir 

numerical simulation are given below. The POD method is introduced in detail in the reference [12, 13]. 
 

2.1 The basic principle of POD method [14] 

Assuming that 1, , ,2 nφ φ φ  is the standard orthogonal basis vector of the data set , , ,1 2 mx x x , 

the sample  n

ix R can be linearly expressed in the following form 

                           
1 2 , 1 , 2 , ,i i nic c c i m    i 1 2 nx φ φ φ               （13） 

where jic  T

j iφ x . If the first k base vector is chosen to approximate the sample vector
ix , we have 

                                   1 2i i ki kc c c   i(k) 1 2x φ φ φ                      （14） 

Ordering error function
2
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For the data set , , ,1 2 mx x x , POD goal is to find a set of optimal base vector 1{ , , , }2 nφ φ φ , in order to 

minimize the errors
2 . The Lagrange factor  , 1 , 2 , ,iju i j k k n     is introduced, and the Lagrange 

function is constructed 
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jφ ’s partial derivative of the two ends of equation (16), there are 
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Where  1 , , ,k k n-k 2 nΦ φ φ φ ，
1, 2, n,

T

k j k j ju u u 
   ju  . Writing equation (17) in a more 

compact matrix form 
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Where  n-k k+1 k+2 nU u u u . For the sake of the optimal solution, let the left end equation (18) is 0, 

there are 

                                       T

n-k n-k n-kXX Φ Φ U                           （19） 

The both end of equation (19) premultiplication 
T

n-kΦ , getting  T T

n-k n-k n-kU Φ XX Φ . Matrix 
n-kU is a 

positive semidefinite matrix, so there is an orthogonal matrix P which makes the following equation 

established 

                                T T T T

n-k n-k n-kP Φ XX Φ P P U P Λ，                    （20） 

Where Λ is diagonal matrix. On the both ends of equation (19) right multiplication matrix P , and the 

combination of equation (20), there is 

                               T T

n-k n-k n-k n-kXX Φ P Φ PP U P Φ PΛ                  （21） 

According to the formula (21), the diagonal elements of the matrix Λ  are composed of the eigenvalues i of the 

matrix
TXX , and the matrix 

n-kΦ P  is composed of the eigenvectors corresponding to i of the matrix
TXX . 

In fact, the diagonal elements of matrixΛ are the square of the singular value i of the matrix
TX . Considering 
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that the orthogonal matrix is guaranteed under the Frobenius norm
F

 , we get 

                
2 2
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F F
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In order to obtain the minimum error, the diagonal elements of the matrix Λ need to select the last 

n k singular value of the matrix
TX . In this way, there will be
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The discussion concluded from above that, when choosing the right singular value vector 
1

k

iiv of 

matrix
TX  as k dimensional POD base vector 

1

k

iiφ , which not only satisfies the optimality conditions, and 

has obtained the minimum error. The minimum error is The minimum error is the square sum of the last 

n k singular values of the matrix. 

Usually in the input / output system, the larger eigenvalues correspond to the main features of the system. 

We choose the k POD basis vector  
1

k

iiφ to represent the original vector more features. 

Setting  
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  ,  1, 2, ,i i n   is descending order eigenvalue of correlation matrix. 

If   %I k d , k POD basis vectors 
1

k

iiφ maintain %d characteristic information of the original data 

set 
1

k

iix , which k satisfies the 

                                   min %, 1, 2, ,k i I k d i n    。                （23） 

                               

2.2 Application of POD method in reservoir simulation 

In order to construct a POD basis vector, the first we need to run a full order reservoir simulator (also 

known as the training process), and to preserve the state vector x of each time step (also called the snapshot, 

including the oil pressure op and the water saturation wS  of all grids). Because of pressure and saturation with 

different physical properties, we use matrix pX ， SX to  preserve op ， wS  respectively (hereinafter 

abbreviated as p and S ): 

                        
1 2 m

p p p p
   X x x x ，     

1 2 m

S S S S
   X x x x          （24） 

Assuming that the number of grids in the reservoir model is N , then each vector
i

px ，
i

Sx (Superscript i denotes 

the number of snapshots)in the matrix pX and
SX  is N dimension, however, the dimension of the state 

vector x of the system is: 2n N . The snapshot needs to be calculated mean value after the snapshot is 

obtained: 
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And each snapshot in the data matrix pX and SX is subtracted from the mean: 

              
1 2ˆ , , , m

p p p p p p p
     X x x x x x x  

                                 
1 2ˆ , , , m

S S S S S S S
     X x x x x x x                （26）     

Implementing the above POD reduction process for the matrix ˆ
pX , the basis vector matrix lpΦ and lsΦ are 

obtained, and we combine the two matrices to obtain basis matrix lΦ , which includes l columns, 

and p sl l l  . At this point, the full order state vector x of the original system can be approximately expressed 

as: 

                                        lx Φ z                                      （27） 
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The equation (27) is removed the subscript and substituted equation (12), we have 

                                
1( , , )k k k k kΦz f u Φz Φz                               （28） 

Equality both ends left multiply at the same time
TΦ  

                               1( , , )T

k k k k kz Φ f u Φz Φz                              （29） 

This achieves the purpose of reducing the order of the original system, the dimension of the state variable is 

reduced from 2n N to p sl l l  . The Newton iteration method is used to solve the nonlinear equations (29). 

Because of the low dimension of the state variables, the computational complexity can be greatly reduced. 

 

III. Example Verification 
A numerical example in the literature [11] is used. In this example, a two-dimensional oil-water two phase 

anisotropic reservoir is described. Its grid is divided into 21 * 21, and the distribution of permeability and 

porosity is shown in Figure 1, 2. The related parameters of reservoir model: thickness h=2m, length and width of 

grid x y   =33.33m，the viscosity of the crude oil 
o

 =5mPa·s, formation water viscosity
w =1mPa·s，

comprehensive compression coefficient 
tc =3.0×10

-3
MPa

-1
, the original formation pressure

ip =30MPa，

borehole radius 
wellr =0.114m，the end point relative permeability of oil phase 

0

rok =0.9，the end point relative 

permeability of water phase 
0

rwk =0.6，oil phase Corey index on =2.0, water phase Corey index wn =2.0, 

residual oil saturation orS =0.2, irreducible water saturation wcS =0.2. We use anti five point method well pattern 

to produce. Center has a water injection well, and four corners have four production wells. We ignore gravity 

and capillary force. 

 

        
Fig.1 Permeability distribution of reservoir model         Fig.2 Porosity distribution of reservoir model 

 

The numerical example is simulated by a fully implicit processing. We modify the source code to achieve 

POD model reduction process and verify the validity of the method. It is divided into training and forecasting 

two processes: 

 

(1) Training process 

The bottom hole pressure of production well is 29.5MPa, the bottom hole flow of injection well is 

0.0015m
3
/s. We run the full order simulator for 1400 days and save the results of the 66 time steps. The pressure 

matrix retains 37 singular values, saturation matrix retains 38 singular values, and the dimension of the base 

matrix lΦ of POD is 2N l , of which 37 38 75l    . This means that the full order simulator is required to 

solve 2 882N   unknown variable, while the reduced order only needs to solve 75 variables. 

In the training process, the comparison between the full order reservoir simulator and the reduced order 

simulator using POD method is shown in figure 3, 4. 
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Fig.3 Oil production contrast of four production wells (training process) 
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Fig.4 Water production contrast of four production wells (training process) 

 

In this paper, the average relative error is used to measure the accuracy of the approximation. For example, 

the average relative error of oil production of per well is defined as: 

, , ,

,
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1
(q q ) / q
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m m i m i m i

o o o POD o

it

E
n 

   

 

Where i indicates time step; tn indicates total number of time steps; 
,qm i

o indicates the oil production of the full 

order simulator for the first i step of production well m ; 
,

,qm i

o POD  indicates the oil production of the reduce 

order simulator for the first i step of production well m . Similarly, the average relative error
m

wE  of water 

production in each production well can be defined. 

During the training process, the average relative error of oil production and water yield of four production 

wells is shown in Table 1. 

 

Table 1 Oil production、water production average relative error of four production wells (training process) 
Average relative error % well1 well2 well3 well4 

m

oE          0.00726        0.01071          0.01032          0.01125 

m

wE          0.01819        0.02315          0.0184         0.00001 

 

The above results indicate that in the training process, oil production and water production of four 

production wells of reduce order and full order simulator are almost identical, the average relative error is very 

small, but the simulation time is increased nearly 3 times, the running time of the full order simulator is 35.527s, 

and the running time of reduction simulator is 12.019s. 
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(2) Forecasting process 

The base matrix
lΦ  obtained by the training process is used to verify the predictive ability of the POD 

reduced order model. At this time, the bottom hole pressure of production wells is changed to 28.5MPa, and the 

flow rate at the bottom of the injection well remains unchanged. The comparison between the full order 

simulator and the reduced order simulator is shown in figure 5, 6. 
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Fig. 5 Oil production contrast of four production wells (prediction process) 

 

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 200 400 600 800 1000 1200 1400
time（d）

w
a
t
e
r
 
p
r
o
d
u
c
t
i
o
n
（

1
0
-
3
m
3
/
s
）

well1 well2 well3 well4
well1（POD） well2（POD） well3（POD） well4（POD）

 
Fig. 6 Water production contrast of four production wells (prediction process) 

 

In the forecasting process, the average relative error of oil production and water yield in four production 

wells is shown in Table 2. 

 

Table 2 Oil production、water production average relative error of four production wells (prediction process) 
average relative error % well1 well2 well3 well4 

m

oE           4.8514          4.5452           2.9597           1.752 

m

wE           2.5149          1.8732           2.0556           0.01 

 

The results show that when the production schedule of forecasting process and training process are 

different, the average relative error of the reduced order and the full order simulator is improved, but it is still 

within the reasonable range of 5%. At this time, the simulation time also increases by nearly 3 times.  The full 

order simulator runs for 35.851s, and the running time of the reduced order simulator is 12.404s. 

 

IV. Conclusion 
1) The application of POD model reduced order method to reservoir simulator can greatly reduce the 

dimension of reservoir model, and improve the operation speed of the simulator by nearly 3 times. 

2) When the production schedule of the training and forecasting process is different, the average relative error 

of the reduced order simulator is improved, but still in a reasonable range of 5%. 

3) The improvement of the operation speed of the reservoir simulator provides an important solution for the 

practical application of the reservoir production optimization and history matching. 
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